Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan.

Identifieur interne : 000E30 ( Main/Exploration ); précédent : 000E29; suivant : 000E31

Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan.

Auteurs : Anthony Arlia-Ciommo ; Amanda Piano ; Anna Leonov ; Veronika Svistkova ; Vladimir I. Titorenko

Source :

RBID : pubmed:25485579

Descripteurs français

English descriptors

Abstract

Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a "program of aging" - i.e., a program for progressing through consecutive steps of the aging process.

DOI: 10.4161/15384101.2014.965063
PubMed: 25485579
PubMed Central: PMC4614525


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan.</title>
<author>
<name sortKey="Arlia Ciommo, Anthony" sort="Arlia Ciommo, Anthony" uniqKey="Arlia Ciommo A" first="Anthony" last="Arlia-Ciommo">Anthony Arlia-Ciommo</name>
<affiliation>
<nlm:affiliation>a Department of Biology ; Concordia University ; Montreal , QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">QC Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Piano, Amanda" sort="Piano, Amanda" uniqKey="Piano A" first="Amanda" last="Piano">Amanda Piano</name>
</author>
<author>
<name sortKey="Leonov, Anna" sort="Leonov, Anna" uniqKey="Leonov A" first="Anna" last="Leonov">Anna Leonov</name>
</author>
<author>
<name sortKey="Svistkova, Veronika" sort="Svistkova, Veronika" uniqKey="Svistkova V" first="Veronika" last="Svistkova">Veronika Svistkova</name>
</author>
<author>
<name sortKey="Titorenko, Vladimir I" sort="Titorenko, Vladimir I" uniqKey="Titorenko V" first="Vladimir I" last="Titorenko">Vladimir I. Titorenko</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25485579</idno>
<idno type="pmid">25485579</idno>
<idno type="doi">10.4161/15384101.2014.965063</idno>
<idno type="pmc">PMC4614525</idno>
<idno type="wicri:Area/Main/Corpus">000D38</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D38</idno>
<idno type="wicri:Area/Main/Curation">000D38</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D38</idno>
<idno type="wicri:Area/Main/Exploration">000D38</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan.</title>
<author>
<name sortKey="Arlia Ciommo, Anthony" sort="Arlia Ciommo, Anthony" uniqKey="Arlia Ciommo A" first="Anthony" last="Arlia-Ciommo">Anthony Arlia-Ciommo</name>
<affiliation>
<nlm:affiliation>a Department of Biology ; Concordia University ; Montreal , QC Canada.</nlm:affiliation>
<wicri:noCountry code="subField">QC Canada</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Piano, Amanda" sort="Piano, Amanda" uniqKey="Piano A" first="Amanda" last="Piano">Amanda Piano</name>
</author>
<author>
<name sortKey="Leonov, Anna" sort="Leonov, Anna" uniqKey="Leonov A" first="Anna" last="Leonov">Anna Leonov</name>
</author>
<author>
<name sortKey="Svistkova, Veronika" sort="Svistkova, Veronika" uniqKey="Svistkova V" first="Veronika" last="Svistkova">Veronika Svistkova</name>
</author>
<author>
<name sortKey="Titorenko, Vladimir I" sort="Titorenko, Vladimir I" uniqKey="Titorenko V" first="Vladimir I" last="Titorenko">Vladimir I. Titorenko</name>
</author>
</analytic>
<series>
<title level="j">Cell cycle (Georgetown, Tex.)</title>
<idno type="eISSN">1551-4005</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Mitochondria (genetics)</term>
<term>Mitochondria (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Saccharomycetales (growth & development)</term>
<term>Saccharomycetales (metabolism)</term>
<term>Unfolded Protein Response (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Mitochondries (génétique)</term>
<term>Mitochondries (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Réponse aux protéines mal repliées (MeSH)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Saccharomycetales (croissance et développement)</term>
<term>Saccharomycetales (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomycetales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomycetales</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Mitochondria</term>
<term>Saccharomycetales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Mitochondries</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines fongiques</term>
<term>Réticulum endoplasmique</term>
<term>Saccharomycetales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Unfolded Protein Response</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Réponse aux protéines mal repliées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a "program of aging" - i.e., a program for progressing through consecutive steps of the aging process. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25485579</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1551-4005</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>21</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Cell cycle (Georgetown, Tex.)</Title>
<ISOAbbreviation>Cell Cycle</ISOAbbreviation>
</Journal>
<ArticleTitle>Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan.</ArticleTitle>
<Pagination>
<MedlinePgn>3336-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/15384101.2014.965063</ELocationID>
<Abstract>
<AbstractText>Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a "program of aging" - i.e., a program for progressing through consecutive steps of the aging process. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Arlia-Ciommo</LastName>
<ForeName>Anthony</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>a Department of Biology ; Concordia University ; Montreal , QC Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Piano</LastName>
<ForeName>Amanda</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leonov</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Svistkova</LastName>
<ForeName>Veronika</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Titorenko</LastName>
<ForeName>Vladimir I</ForeName>
<Initials>VI</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell Cycle</MedlineTA>
<NlmUniqueID>101137841</NlmUniqueID>
<ISSNLinking>1551-4005</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004718" MajorTopicYN="N">Saccharomycetales</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056811" MajorTopicYN="N">Unfolded Protein Response</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">D, diauxic growth phase</Keyword>
<Keyword MajorTopicYN="N">ERCs, extrachromosomal rDNA circles</Keyword>
<Keyword MajorTopicYN="N">IPOD, insoluble protein deposit</Keyword>
<Keyword MajorTopicYN="N">JUNQ, juxtanuclear quality control compartment</Keyword>
<Keyword MajorTopicYN="N">L, logarithmic growth phase</Keyword>
<Keyword MajorTopicYN="N">MBS, the mitochondrial back-signaling pathway</Keyword>
<Keyword MajorTopicYN="N">MTC, the mitochondrial translation control signaling pathway</Keyword>
<Keyword MajorTopicYN="N">NPCs, nuclear pore complexes</Keyword>
<Keyword MajorTopicYN="N">NQ, non-quiescent cells</Keyword>
<Keyword MajorTopicYN="N">PD, post-diauxic growth phase</Keyword>
<Keyword MajorTopicYN="N">Q, quiescent cells</Keyword>
<Keyword MajorTopicYN="N">ROS, reactive oxygen species</Keyword>
<Keyword MajorTopicYN="N">RTG, the mitochondrial retrograde signaling pathway</Keyword>
<Keyword MajorTopicYN="N">Ras/cAMP/PKA, the Ras family GTPase/cAMP/protein kinase A signaling pathway</Keyword>
<Keyword MajorTopicYN="N">ST, stationary growth phase</Keyword>
<Keyword MajorTopicYN="N">TOR/Sch9, the target of rapamycin/serine-threonine protein kinase Sch9 signaling pathway</Keyword>
<Keyword MajorTopicYN="N">UPRER, the unfolded protein response pathway in the endoplasmic reticulum</Keyword>
<Keyword MajorTopicYN="N">UPRmt, the unfolded protein response pathway in mitochondria</Keyword>
<Keyword MajorTopicYN="N">cell growth and proliferation</Keyword>
<Keyword MajorTopicYN="N">cell survival</Keyword>
<Keyword MajorTopicYN="N">cellular aging</Keyword>
<Keyword MajorTopicYN="N">ecosystems</Keyword>
<Keyword MajorTopicYN="N">evolution</Keyword>
<Keyword MajorTopicYN="N">longevity</Keyword>
<Keyword MajorTopicYN="N">programmed cell death</Keyword>
<Keyword MajorTopicYN="N">yeast</Keyword>
<Keyword MajorTopicYN="N">yeast colony</Keyword>
<Keyword MajorTopicYN="N">yeast replicative and chronological aging</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25485579</ArticleId>
<ArticleId IdType="doi">10.4161/15384101.2014.965063</ArticleId>
<ArticleId IdType="pmc">PMC4614525</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Res Microbiol. 1999 Apr;150(3):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10229949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 Apr;3(4):447-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10230397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9100-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transplant Proc. 2003 May;35(3 Suppl):7S-14S</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12742462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 11;425(6954):191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12939617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2004 May;5(5):470-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15184977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Aug;53(4):1003-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Jun 6;169(5):711-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15939758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2006 Sep;127(9):733-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16784770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Jul 3;174(1):89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2006 Sep;30(5):806-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16911045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2006 Sep;5(18):2087-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Nov 20;175(4):521-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17101700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2007 Apr;5(4):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17403371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 Dec 15;6(24):2997-3003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18156807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Mar;19(3):1271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 May 2;133(3):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18455976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2008;24:29-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Aug 7;454(7205):728-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 Oct;4(7):874-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2008 Dec;20(6):723-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18848886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Nov 1;7(21):3355-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18948731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Nov 1;7(21):3344-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2009 Jan;89(1):147-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19126757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2009 Feb;11(2):494-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19196279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2009 May 06;(27):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19421136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 May;5(5):e1000467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19424415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Jun 15;8(12):1901-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19471118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2009 Sep;44(9):555-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19539741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2009 Jun 25;(28):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Sep;20(17):3851-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19570907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Aug 24;186(4):541-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19687257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2009 Oct;37(Pt 5):1050-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19754450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Nov 20;284(47):32572-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2009 Nov;11(11):1305-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Oct 13;19(19):R886-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2010 May;17(5):763-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jan 22;140(2):257-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20141839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2009 Jul 13;1(7):622-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2009 Dec 31;1(12):1008-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2009 Jan 28;1(1):131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 25;464(7288):513-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20336133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Apr 16;328(5976):321-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 May 15;9(10):1859-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2010 Jul;2(7):393-414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20622262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2010 Aug;2(8):461-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20693605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Sep;11(9):644-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20717147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 Aug 15;9(16):3151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Dec;47(12):1012-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20728557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2011 Mar;12(3):252-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21083858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Jan 1;10(1):144-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Feb 15;25(4):336-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21289062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Apr;22(7):988-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21289090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Mar 21;192(6):949-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Mar;7(3):e1002015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21436897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 May 1;10(9):1385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 May 6;42(3):390-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21549315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Jun 8;13(6):668-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21641548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2012 Mar;36(2):306-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21658086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2011 Oct;10(5):885-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Sep 15;10(18):3042-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21862878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2011 Aug;3(8):716-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21869457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Sep 5;194(5):679-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21875945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2011 Oct;39(5):1471-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21936836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(9):e24530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Nov 14;195(4):617-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22065637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2012 Feb;12(1):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22093953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2012;57:79-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2012;57:101-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2012;57:123-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2012;57:145-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2012;57:251-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22094426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 23;147(5):959-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2012 Mar;12(2):249-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22188402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Feb;1833(2):400-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22374136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dose Response. 2012;10(1):75-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22423230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 May 25;46(4):436-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22560924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Aug;23(16):3041-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2012 Jul 3;16(1):18-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2012 Jul 3;16(1):55-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2012 Jul 06;3:256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22783207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2012 Mar 1;5(2):203-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22808334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2012;2012:976753</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22829965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jul 20;19(3):321-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22870907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Aug 15;11(16):3087-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22871733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Oct;86(1):225-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22882838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Sep 15;11(18):3443-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22894934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2012 Nov;12(7):739-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22909074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2012;2012:601836</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22928081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2012 Jul 17;3:283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Oct 1;11(19):3531-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22951539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Oct 1;11(19):3532-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22951542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2012 Oct 25;2(4):738-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23022486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e46243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23029448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Dec;23(24):4679-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23097491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2013 Feb;13(1):2-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23107076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Dec 13;492(7428):261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 2013;75:621-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23190075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2013 Oct;48(10):1006-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23235143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Dec 18;22(24):R1048-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23257191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Oncol. 2012 Dec 31;2:203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23293770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2013;965:463-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23296677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jan 17;493(7432):338-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2013 May;13(3):267-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23336757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 Feb 05;2:e00306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23390587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23409181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2012 Dec;4(12):861-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23425777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2013 Apr;5(4):234-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23553280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2013 Apr;5(4):227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23603822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2013 Jun 15;12(12):1842-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23708516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2013 Jun 4;17(6):954-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23747251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2013 Sep 15;454(3):551-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2013 Aug;65(8):665-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23818261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2013;69:153-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23821148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2013 Jul;5(7):551-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23924582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2013;1048:49-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23929097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 Jan;24(1):53-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23932848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2013;2013:139491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23956814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2013;2013:102485</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23970946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Oct 1;126(Pt 19):4331-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24013545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Dec;24(23):3697-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24088570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2014 Feb;14(1):40-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24103195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2014 Feb;14(1):96-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24119061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2014;13(1):138-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24196447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Oct;9(10):e1003854</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2013 Dec 15;12(24):3736-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24240128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2013 Dec 2;23(23):2417-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24268413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Dec 26;5(6):1589-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24332850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Oct 1;21(10):1490-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24382195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Jan;10(1):e1004019</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24391512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2014 Mar;35(3):146-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24439680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Mar;38(2):254-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Mar;38(2):300-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24484434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Feb 17;15:136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24533484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000Res. 2013 Oct 15;2:216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24555104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2014 Apr;18:61-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24631930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biogerontology. 2014 Jun;15(3):289-316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24711086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 May 06;3:e01883</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24843009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Jun 19;157(7):1515-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24949965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1989 Jan;171(1):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2644196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2014 Jan 06;1(1):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28357208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2014 May 27;1(6):163-178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28357241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Dec;127(6 Pt 2):1985-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7806576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Dec 26;91(7):1033-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9428525</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Arlia Ciommo, Anthony" sort="Arlia Ciommo, Anthony" uniqKey="Arlia Ciommo A" first="Anthony" last="Arlia-Ciommo">Anthony Arlia-Ciommo</name>
<name sortKey="Leonov, Anna" sort="Leonov, Anna" uniqKey="Leonov A" first="Anna" last="Leonov">Anna Leonov</name>
<name sortKey="Piano, Amanda" sort="Piano, Amanda" uniqKey="Piano A" first="Amanda" last="Piano">Amanda Piano</name>
<name sortKey="Svistkova, Veronika" sort="Svistkova, Veronika" uniqKey="Svistkova V" first="Veronika" last="Svistkova">Veronika Svistkova</name>
<name sortKey="Titorenko, Vladimir I" sort="Titorenko, Vladimir I" uniqKey="Titorenko V" first="Vladimir I" last="Titorenko">Vladimir I. Titorenko</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25485579
   |texte=   Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25485579" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020